MATH5010 Linear Analysis (2022-23): Homework 5. Deadline: 06 Nov 2022

Important Notice:

 \clubsuit The answer paper must be submitted before the deadline.

♠ The answer paper MUST BE sent to the CU Blackboard.

1. Let $X := \{f : [a,b] \to \mathbb{R} : f \text{ is continuous on } \mathbb{R}\}$. For each $f \in X$, let $||f||_1 := \int_a^b |f(t)| dt$ and $||f||_{\infty} := \sup\{|f(t)| : t \in [a,b]\}$. Put

$$Tf(x) := \int_{a}^{x} f(t)dt$$

for $x \in [a, b]$.

- (i) Show that $T: (X, \|\cdot\|_1) \to (X, \|\cdot\|_\infty)$ is a bounded linear map of norm 1.
- (ii) Show that $T: (X, \|\cdot\|_1) \to (X, \|\cdot\|_1)$ is a bounded linear map of norm b-a.
- 2. Let X be a normed space over \mathbb{C} . Let $x, y \in X$ such that ||x y|| > c > 0. Show that there is an element $f \in X^*$ such that f(x) > c + f(y).
- 3. Assume that the vector space \mathbb{C}^m is endowed with the usual norm, i.e., $||(z_1, ..., z_m)|| := \sqrt{|z_1|^2 + \cdot + |z_m|^2}$. Define a map T from \mathbb{C}^m to its dual space by $Tz(w) := \sum_{k=1}^m z_k w_k$ for $z = (z_1, ..., z_m)$ and $w = (w_1, ..., w_m)$ in \mathbb{C}^m . Show that the map T is an isometric isomorphism.

* * * End * * *